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Change-point detection in panel data

Lajos Horvath®*" and Marie Huskova®

We consider N panels and each panel is based on T observations. We are interested to test if the means of the
panels remain the same during the observation period against the alternative that the means change at an
unknown time. We provide tests which are derived from a likelihood argument and they are based on the
adaptation of the CUSUM method to panel data. Asymptotic distributions are derived under the no change null
hypothesis and the consistency of the tests are proven under the alternative. The asymptotic results are shown to
work in case of small and moderate sample sizes via Monte Carlo simulations.
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1. INTRODUCTION AND RESULTS

One of the tools to analyse large, high-dimensional data sets is the panel data model. The focus of this article is to test for possible
changes in the location (mean) parameter of panel data. We assume that we study N panels and we have T observations in each
panel. We define our model as

Xig = i+ 0il{t > to} +ejp, 1<i<N1<t<T, )

where Ee;; = 0 for all i and t. According to (1), y; changes to y; + 9; in case of panel i at time t,. The parameter t,, the time of change,
is unknown. Both T and N are assumed to be large. In this article, we wish to test that the location parameter y; will not change
during the observation period, i.e.

Ho:0i=0 forall1<i<N.

There is an ever increasing literature to test the structural stability of univariate as well as multi-variate models (cf. Cs6rgé and
Horvéth, 1997; Brodsky and Darkhovskii, 2000) but much less is known on the stability of panel models. Change point detection in
panel data can be viewed as a structural stability problem in high dimensional time series. Joseph and Wolfson (1992, 1993) initiated
change point models for panel data. Im et al. (2005) and Bai and Carrion-i-Silvestre (2009) discuss the analysis of panel data with
possible change points in case of stationary and non-stationary (random walk) errors. Atak et al. (2011) use a panel data model to
detect changes in the climate in the United Kingdom. Bai (2010) uses the least squares and the quasi-maximum likelihood method to
estimate the time of change (tp) assuming a priori that a change has occurred, i.e. Hy does not hold. We follow Bai’s (2010) model in
our study.

Using a quasi-maximum likelihood argument, Bai (2010) estimated t,, the location of the time of change, by the location of the
maximum of the absolute value of

Vg (x) = ,\ljﬂﬁ;{;ﬁz{i(x) — M} 0<x<1, (2)
where || denotes the integer part,
Zri(x) = # (Sr‘;(x) - [T—T’_(Jsr,im)), 0<x<1 3)
with

[Tx]
Srix) = X, 0<x<1,

t=1

and the ¢7's are some suitably chosen standardization constants [cf. (10)]. Using our notation, the estimator used by Bai (2010) can be
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written as

N 2
fo = arg maxy <<y {Z%}

In this article, we use a model where the innovations (errors) form a linear process:
o0
iy = Zci,ﬂﬂi,t—ﬂ, 1T<i<N1<t<T.
=0
For the moment, we assume the following regularity conditions:

the sequences {&j;, —0co < t < co} are independent of each other (4)

for every i the variables {&;;, —co <t < oo} are iid. . (5)

Assumption (4) means that the panels are independent. The case of dependent panels will be briefly discussed in Section 3. It is
easy to see that under our conditions, the process Vyr does not depend on varg;g so it can be assumed that the variance of the
innovations is 1:

Etip=0, Egfo=1 and Elgol" < cc. (6)

The distributions of the &,'s can be very different, but the next condition requires that the average of the high moments is
bounded:

N
1

limsup— ) Eleio|* < oco. 7

m sup N.'E-I leiol @)

The choice of x will be specified in Theorems 1-3 as k¥ > 4 and x = 8 in Theorem 4. Of course, (7) holds, if the moments E|¢; o|" are
uniformly bounded. However, condition (7) allows that some of the ¢;o's and hence the error terms possess kth order moments of
large magnitude as long as (7) still holds.

The errors in each panel are stationary linear sequences and their distributions depend on the panel. The coefficients in the
definition of the linear sequences have the following properties:

lciel < co(£+1)™" forall1<i<N,0</{<oo withsomecanda>2 (8)
and

00
there is & > 0 such that @’ > §* with ¢; = ZC,"( forall 1 <i<N. (9)

0

Since
1 [ ?

;mff(;ei,,) =07, 1<i<N, (10)

we obtain immediately from assumptions (6) and (9) that a?> = ¢? and
62> forall1<i<N, (11)

i.e. we have a common lower bound for the long-run variances of each panel. The next condition is on the connection between the
number of panels (N) and the length of the observed time series in each panel (7):

N

70 (12)
Cong(i)tion (12) allows that the number of panels is larger than the number of the observations in the individual panels.

Let — denote the weak convergence of stochastic processes in the Skorokhod space D0, 1].

Theorem 1. If Hy, (4), (5), (8), (9), (12) hold and (6), (7) are satisfied with some k > 4, then

— D[0,1]
VN‘T(X) — F(X),

where I'(x) is a Gaussian process with E[(x) = 0 and EL(x)['(y) = 2(1 — y)%, if0<x <y < 1.
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Remark 1. Checking the covariance functions, one can easily verify that

(1

where {W(y), y > 0} is a Wiener process (standard Brownian motion). It is well known that the CUSUM process (standardized by the
long-run variance) converges weakly to a Brownian bridge assuming weak dependence. Under the conditions of Theorem 1 for each
i, the process Zr(x) converges to a Brownian bridge. So it is interesting to compare (13) with (1 — x)W(x/(1 — x)) which defines a
Brownian bridge.

The next result illustrates that condition (12) is optimal. To state the result, we need further notation. We introduce the linear
process

{r(x),ogxg1}2{\/5(1—x)2w(i72)2),05x51}, (13)

00 00
e, = Z Cetie—e  with ¢, = E Cik- (14)
=1 k=£+1

The process ej, appears in the Phillips and Solo (1992) representation of the sums of the e;/s [cf. (31)]. Let
1 1
g(x) = 2[1 —x+x%] {A,mﬁiz_l:var(e,‘o) - A’mﬁ;aiq‘o}.
Theorem 2. If Hy, (4), (5), (8) and (9) hold and (6), (7) are satisfied with some k > 4, then

Di0,1]

turt) — (M) 2 1),

as min(N,T) — oo, where I'(x) is defined in Theorem 1.
Theorem 2 means, if N/T> — ¢ # 0, there is a non-disappearing drift term in the limit.

Remark 2. We wish to point out that there are no assumptions on the /s, and they can be random as well as non-random terms.
Next, we provide a result which can be easily used to show the asymptotic consistency of tests based on Theorem 1.

Theorem 3. If (4), (5), (8), (9), (12) hold and (6), (7) are satisfied with some k > 4 and ty = to(T),

{

PP ( 0
0 < lim inf = < lim su 1
< 7> P T <1,

T—o0 T—o00

T XL,
WZ] 0 — 00, (15)
as min(N,T) — oc, then

. P
sup_ |V (x)| — oo.
0<x<1

Theorem 1 yields that supg<,<; |Vxr(x)| and fol th,’r(x)dx converge in distribution to sup g<y<1|I'(x)| and f; I'2(x)dx, respectively.
So large values of supg<y<; [V (x)| or fo] Vf,‘T(x)dx indicate that the null hypothesis is violated. The asymptotic critical values can be

computed from Theorem 1. Theorem 3 gives conditions for the consistency of both tests. Condition (15) covers quite a large
spectrum of alternatives. The test is sensitive to fixed changes in relatively few panels, and at the same time, it is sensitive to relatively
small changes in a large number of panels. This means that the tests will detect instability of the model in case of small changes in
several panels as well as relatively large changes in few panels. We also would like to point out that Theorem 3 can be easily
extended to the multiple changes model.

2. ESTIMATION OF LONG-RUN VARIANCES

Since the parameters o; in the defintion of VMT are unknown, we need to replace them with some suitable estimators. Hence, we
define
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Vnr(x N'/2Z{ 20) Z2,(x) M}, 0<x<1, (16)

where the long-run variance of T-'/2S;;(1) is estimated by &2(i). If for any i, the errors {e;,1 < t < T} are ii.d., we can use the
sample variance

T L
53(i) = — 1 E e —Xr()?, Xr(i) = ?in,, (17)
t=1
to estimate the variance of T“/ZSU(U in the ith panel. If independence cannot be assumed, a kernel estimator is used:
62(’ Z(XII‘_XT ) +ZZ ( )VT,S '): (18)

where

T—s
Prall) = 2 e — Xr(9) (Kiers — ¥r(0)

t=1

is the sample correlation of lag s in the ith panel. The function K is the kernel in the definition of ¢2(i) in (18) and h = h(T) is the
window. For a discussion on kernel estimators, we refer to Taniguchi and Kakizawa (2000) and Brockwell and Davis (2006).
Throughout this article, we assume the following conditions on the kernel estimator:

K(0) =1 (19)
K(u) = 0if |u| > a and K(u) is Lipschitz continous on [—a,a] with some a > 0 (20)

K has v bounded derivatives in a neighbourhood of 0 and the first

(21)

v — 1 derivatives of K are 0 at 0, where v > 1 is an integer

and
h
h:h(T)—»ooand?—>0asT—>oo. (22)

We note that the ‘flat top’ kernel satisfies (21) for all v > 1. Assumption (21) is needed to have a very small bias of the estimators
2 (i). We see in Section 3 that even very small changes to the model in (1) alter the asymptotics for Vi 7. Similarly, the estimator 62 (i)
must be very close to ¢? to claim that Vyr and Vyr have the same asymptotic distribution.

The next condition is on the connection between the number of panels (N), the length of the observed time series in each panel (T)
and the bandwidth (h):

Nh? N'/2
- 0 and i 0, where 7 =min(v,a—1). (23)

As before, assumption (23) allows to have short time-series in a much larger number of panels.

THeorem 4. If Hy, (4), (5), (8), (9), (19)-(23) hold and (6), (7) are satisfied with k = 8, then

Var (0 223 P, (24)

where I'(x) is defined in Theorem 1.

3. DEPENDENT PANELS

In some applications, it cannot be assumed that the panels are independent, and therefore we provide a simple modification of the
model in (1). We introduce the dependence between the panels through the term {;:

Xie =1+ 0il{t > to} + p;ly +eir, 1<i<N1<t<T, (25)

where we assume that
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{{;;1 <t<oo} and {ej,1 <t < oo} are independent. (26)

Instead of specifying the structure of the {/'s, we require that they satisfy the functional central limit theorem:

17x|

7-1/2 ZC' lw (27)

where W(x) is a Wiener process (standard Brownian motion). The scaling constants ¢; explain how much influence {; has on the ith
panel. Interestingly, even small dependence between the panels changes the asymptotics for Vi and Vi, under H,. For example, if

b =iy = 5" with some & #0 and 0 < p; < 1/4,
and {¢&;} is a bounded sequence, then we have
sup [Viyr(x)| - oo. (28)
0<x<1
The proof of (28) in Section 8 shows that
NI/Z
VN T(X) —> B( ),
ZI 1 l
where B(x) is a Brownian bridge. If p; = 1/4 in (28), then
2
Vnr(x) ol [(x) + &B%(x)  with & = I|m Nzc_lz (29)
i=1 i
and
Tx|(T Tx D[01]
szz{ 225,00 - M} C() + B8 —x(1 ), (30)

where B(x) stands for a Brownian bridge.
If p; > 1/4 for all i, then Theorem 4 still holds. Roughly speaking, the dependence has no effect on the test statistic if the
correlation between the panels is less than N~"2,

4. SIMULATIONS

We used Monte Carlo simulations to check if Theorems 1 and 4 provide good approximations in case of small and moderate panels
and sample sizes. Our test statistic is sup, |Vn,r(x)|, where Vjr is defined in (16). [Similar results were obtained for sup, |Vn,r(x)|,
where Vi 7 is given in (2).] First, simulating Brownian motions we obtained z, from the equation

P{ sup |I'(x)| > z,} = «,
0<x<1

and the values for « = 0.1,0.05 and 0.01 are given in Table 1. Next, we studied if z, is a good approximation for z,(N,T), where z,(N,T)
is defined by

(N, T) = inf(y :P{sup [Wwr(x)| >y} < a).
0<x<1

The results are given in Table 2 when the panels are independent of each other, and the panels are based on independent
identically distributed random variables. We considered standard normal, y* and t distributions with 5 degrees of freedoms. The
variances were estimated by the corresponding sample variances of the panels.

Next, we studied the effect of independence on the critical values. The long-run variance was estimated by 62 (i) of (18) with the
flat top kernel

Table 1. Critical values of sup g-y<:1|T'(x)]

0.1 0.05 0.01
0.796 0.894 1.145
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Table 2. Simulated critical values of supg_,., |Vyr(x)| based standard normal, 52 and t5 errors

Normal 1 ts

N/T 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
50/50 0.81 0.91 1.15 0.80 0.90 1.09 0.78 0.87 117
100/50 0.80 0.89 1 0.80 0.89 1.14 0.78 0.88 1.06
100/100 0.83 0.94 1.20 0.82 0.92 1.13 0.84 0.93 1.10
200/100 0.84 0.930 113 0.83 0.92 1M 0.82 0.90 1.12

1, if lul <1/2

K(u) =< 2(1 — |ul), if 1/2<|ul <1
0, if |ul > 1.

We tried several values for h and h € [2.5,5] worked well. The results are reported in Table 3 for AR(1) process with standard
normal innovations and h = 3. Table 4 contains the results when the innovations are independent t variables with 5 degrees of
freedom.

Table 2 is based on the assumption that the panels are formed from independent observations so the sample variance can be used
to estimate the variance of the panels. Table 3 does not assume that the observations are independent so the long-run variance
estimator of (18) is used. Comparing Table 2 and Table 3 with p = 0 illustrates that the estimation of the long-run variance reduces
the accuracy of the limit results.

We considered the power of the test very briefly. The size of the changes was independent uniform on [—1,1] or [-1/2,1/2] in 50%
as well as in 10% of the panels. The time of change is t, = 7/2 The observed frequency of rejections are reported at the 5%
siginificance levels in case of independent standard normal errors (Table 5) and AR(1) process with p = 0.1 and p = 0.2 with
independent standard normal innovations (Tables 6 and 7). Clearly, the test has very good power even in case of small changes in
few panels. All simulations are based on 2000 replications.

To illustrate the applicability of our results, we used data from the World Income Inequality Database at http:wider.unu.edu/
research/Database/en_ GB/wiid/. The original data set contains the Gini coefficients in percentage points and source
information for 159 countries. (The Gini index is used to measure the inequality of wealth.) Unfortunately, a large amount of data is
missing especially before the 1980s. We selected 33 countries from 1987 to 2006, including European countries (United Kingdom,
Spain and so on), Australia, United States, South American countries (Argentina, Venezuela and so on), China and Taiwan. Each
country has at least 16 recorded observations. Missing observations were replaced using linear interpolation if more than one point
was given for one year, they were replaced by the average. So our analysis is based on N = 33 and T = 20. Since T is small, the long-
run variance estimator in (18) might not be accurate. Hence, we used the sample variance in (17) and the long-run variance estimator

Table 3. Simulated critical values of sup,_,.; |Vnr(x)| based AR(1) processes standard normal innovations

p=0 p =01 p=03 p=05
N/T 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
50/50 0.97 1.1 1.42 0.89 1.03 1.26 0.93 1.05 1.25 123 1.36 1.64
100/50 1.01 1.14 1.57 0.93 1.05 1.31 0.99 1.1 133 1.40 1.54 1.80
100/100 0.89 1.00 1.23 0.88 0.98 1.20 0.98 1.1 1.32 1.49 1.68 1.95
200/100 0.92 1.04 1.25 0.89 0.99 1.23 1.09 1.20 143 1.76 1.88 218

Table 4. Simulated critical values of sup,_,., |Vyr(x)| based AR(1) processes with t; innovations

p=0 p =01 p=03 p =05
NI 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01
50/50 0.96 1.09 143 0.86 0.97 1.29 0.92 1.05 1.26 1.22 1.33 1.61
100/50 0.99 113 1.40 0.92 1.03 1.29 0.96 1.07 1.36 1.39 1.52 1.80
100/100 0.88 1.00 121 0.88 0.98 1.21 0.99 1.10 1.36 1.50 1.64 1.98
200/100 0.90 1.02 1.24 0.89 0.99 1.22 1.07 1.18 1.40 1.76 1.92 2.20

Table 5. Empirical rejection percentages for supg.x.1 |Vn,7(X)| at 5% significance level with independent standard normal errors

Ul-1/2,1/2] Ul-1,1]
N/T 50% 10% 50% 10%
50/50 60.3 119 99.9 41.5
100/50 80.3 146 100 57.6
100/100 99.9 31.1 100 92.6
200/100 100 478 100 99.9
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Table 6. Empirical rejection percentages for sup,.,.; |V r(x)| at 5% significance level in case of AR(1) processes with p = 0.1 and standard normal

innovations

Ul-1/2,1/2] ul-1,1]
N/T 50% 10% 50% 10%
50/50 522 142 993 325
100/50 723 23.0 100 49.3
100/100 98.5 27.0 100 83.2
200/100 100 44.4 100 97.6

Table 7. Empirical rejection percentages for sup,.,.; |V r(x)| at 5% significance level in case of AR(1) processes with p = 0.2 and standard normal

innovations

Ul—1/2,1/2) u[-1,1]
N/T 50% 10% 50% 10%
50/50 420 12.8 974 27.2
100/50 62.1 211 100 428
100/100 95.2 249 100 77.7
200/100 99.9 424 100 95.0

in (18) with several choices of h. In all cases, the no change in the mean null hypothesis was rejected at least 1% significance level.
Visual inspection of the panels shows an increase in the Gini index in nearly all countries used in our example except countries in
Northern Europe (Figure 1). Figure 2 is more typical where jumps in the Gini indices can be observed. Our estimator for the time of
change is the location of the maximum of the test statistics. We obtain 1992 as the estimator for the time of change which can be
visually observed on Figure 2.

5. PROOF OF THEOREM 1

Lemma 1. If (4)-(9) and (12) hold, then the finite dimensional distributions of \_/N'T(X) converge to that of I'(x), where I'(x) is defined in
Theorem 1.

Proor. According to Phillips and Solo (1992) (cf. Bai, 1994, p. 470) we have that

k P k P
;ei,r - ?;ei,r = aj gfii,t - f;gi" + Hi ko (31)

where a; is defined in (9),

k * * k *
Nik = Mix(T) = (1 - f) €0~ Eix T e

e —e— Sweden
—— Denmark
- Finland
—~=- Norway
Q-

Gini
315
0\\
L
NN,
. \x
o x/
' \X
x/
X/
\x
/
\
_—
S

Year

Figure 1. The Gini indices (in percentages) for four Northern European countries
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Figure 2. The Gini indices (in percentages) for five former socialist countries

where the ef's are defined in (14). We recall that according to (6), a? = a7. Let

1 [ x| &
Qri(x) = 772 (Z Eit —l—TJZ&'i,t)

1 t=1

Now, (31) yields

k "
2,(%) = a3, (5) + 2a0n (5) 77y + T )
Since Qy; is a tied-down sum of independent identically distributed random variables, we obtain immediately that
k k\ k
aEQT,; (T) 7 ( T) ; (33)

Using the definition of e]; we conclude that

K\ . VLR VAP

EQT,;' (7.) e,-,o =0, EQTI( ) T2 ,k T (1 — ?) ci,OEgiz,O’
K\ k L

l§) s~ (£t

and by the stationarity of e;; we have

Bty <2 (E(elo)? + E(€)? + E(efy)?) < 2 E(€fo)

It follows from (8) that

lim supZ|c,,| < 00

im0
and therefore

E(e})” < GiEed,
with some constant C;. Thus, we obtain by (11)

ZN:{%EZ%:(X) LT (T — erJ)}‘ N"Z Za,o

1

1
su
0<xF<)1 N1/2

with some constant C, and therefore on account of (6) and (12)

~ —

o<x<1 N'/2 | &

Next, we show that for all k
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_ k k
Vnr (T) —Rnr (T) = op(1), (35)
where
N
Tx|( Tx|)
R, (x Z{@,( x) — 7L AU } (36)
1

In light of (34) it is enough to prove that

1?l?gxr:l’,§,_v]: ( Z%,() Q%,( ))2:0(1). (37)

Using again (32) we obtain that
E(ZT,( ) aloi,( ))2 = E(2aQr; (f)r-‘/zn,,k + 07 /T)
< 16E{020%,< )n,*/r+ n,,(/rz}

< c;{ S Eefy +— (E ,o)'/z(EQ‘}( ))‘/2}

with some constant Cs. By the Rosenthal inequality (cf. Petrov, 1995, p. 59), we conclude

EQ?J( ) Ca 7 { ety + (620},

where C, is a constant and therefore by the Cauchy-Schwarz inequality we have

v () () <oty et st e
< cs%%,;a:;fo,

completing the proof of (37).
let0 < x3 < x5 < -+ < x¢ < 1and 4, 4,,..., A be constants and introduce

K
Lri =Y 4(Q7(xe) — EQF;(xe))-
£=1

Since Qy; is a tied-down sum of independent, identically distributed random variables, lengthy but elementary calculations give
that

El};>C, #T>T, (38)
where the constants C, and T" only depend on x;,xa,...,Xc and 4, s, ..., A. On the other hand, applying again the Rosenthal
inequality (cf. Petrov, 1995, p. 59) we obtain that

ElLr "> < CoT */2{TEleso|* + T2}, (39)

where Cg only depends on the 4’s. Using (38) and (39), we conclude that

(S Bl 2) ™ (1 Eleol) el
(Chewy)”
i=1 T

1 N 2/k 1 N 2/k
(4-x)/(2) 1-x/2 1 T , K
< CoN(AR)/ (2% (T ¥, Niz]:Ek.l,oI) +(N;E|s,,o|)

on account of (11). Using Lyapunov’s theorem (cf. DasGupta, 2008, p. 64), the asymptotic normality of >, Lr; is established.
Applying the Cramér-Wold rule (cf. DasGupta, 2008, p. 9), we obtain the convergence of the finite dimensional distributions to a
normal law.

Next, we establish the covariance structure of the limit. Let B(x) be a Brownian bridge. Following the arguments leading to (38), one
can prove that for all x and y
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max [cov(Q},(x), @2, (¥)) — cov(B2(x), B(»))| — 0.

Hence, ET'(x)I'(y) = cov(B?(x),B%(y)). To obtain the representation of the limit in term of a Wiener process, we introduce the
Ornstein-Uhlenback process U(x), i.e. U(x) is a stationary Gaussian process with EU(x) = 0 and EU(x)U(y) = exp (—|x — y]). It is

well-known that
_BX  pex<n z{u(l.og(L)),mm}
x(1—x) 2 1—x

(cf. Cs6rgdé and Horvath, 1993, p. 255). By the stationarity of U, we have
2
i o) -7 (006 )7 (ool 5)) ”
~evor o))
forall 0 < x <y < 1. It follows from the definition of U that for every h > 0, we have

(U(0), U(h)) Z(U(0), exp(—h)U(0) + /T — exp(—2h)¢), (41)

where ¢ is a standard normal random variable, independent of U(0). Using (41), elementary arguments yield that
E{U?(0)U?(h)} = 1 + 2exp(—2h),

and therefore (40) implies that EL(x)[(y) = x2(1 — y)?, if 0 < x < y < 1. Computing the covariance functions, it is easy to verify
that Remark 1 holds.
We continue with the proof of the tightness. O

Lemma 2. If (4)-(9) and (12) hold, then Vyx(x) is tight in D[0, 1].

Proor. We use again (32). Applying Rosenthal’s inequality (cf. Petrov, 1995, p. 59) we obtain for all 1 < ¢ < k < T that

K/2
1L
A (k,€) = E(me(nizj( - ’112,1? - E(’hz,k - '1,21)))
i i

N K/4
Z E(U;z* - E’If,k)z]

N
< GN*/AT /2 {Z E(m7y — qu‘,()"/2 +

i=1

N N K/4
+ ) E(n}, — Enfy)? + [Z E(n}, — En?,e)z]
i=1

i=1

N N K/4
< GN AT {Z(ﬂ'hﬂx + Elmif|*) + [E(Eﬂ?,k + E’I?,z)] }

i=1 i=1

First, we note that there is a constant C; depending only on 0 < y < k such that
E|e{,|" < GsEleiol”,
resulting in
En}‘* < Gafly and  E|ny|* < GsElgiol".

Hence,

/4
L 1 & -
Ak, £) < c6r"/2{ﬁ > " Elsiol* + [NZ&-:O] } < GT ™2, (42)
i=1 i=1

Repeating the arguments leading to (42) we obtain that
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Ax(k, )

o - -
(NT1 x/4 {’XN]:( ‘QT'( 'h,k_EQTJ(k)’Lk Qr,:(p)ﬂ,r EQr; ( )
(o200 GJo’]

N

> E@ry
¢ , x/4
T 'Ii,z)

1 N .
<G (NTY T {Z(E Qr.( ) 2+ E|Qri(¢/T)m;,

’z’_v‘: E(Qr; (;) Nie) — EQr
Z E(Qr; ( ),1’ } x/4+ .2—1: E(Qr; (;) 'l,',l)z] x/4} |

Using the Cauchy-Schwarz inequality, we get for all 0 < y < k/2, as in the proof of Lemma 1, that

ﬂm()quﬂm()ﬁﬂmwwz
= C“’{(T_”'E leio|?)'/? + (E‘:iz,o)ﬂz}(f ENka

< CniEleiol”.

K/2+E

K/Z)

+

=
N———
=
>
S
|
m
o
~
-

7_

+

x/2)

'l:k
N

Thus, we have

1 N x/4
Ve
i=1

Az(ksf) S cl2 T"“{ ZE|"10|K

1
BT

o=l [0-9 409
1 <k</{¢<T.Iltis easy to see that forall 0 < y < k/2, we have
() o) L0409
cai()-u B ()

Using the Cauchy-Schwarz inequality, elementary arguments give

) )
sw%@M%QW@(gm@qm ) (@4
et ) ) o )"

The Rosenthal inequality yields

Next, we introduce

¥

(43)

91 £q pAANOS are B[O () ‘9K JO 8] 10J ATEL ] OUTRI() A9TYY, WO (HIOYTPUCO-PUB-RILIOHIOD o]t ATEr qour[uoyy: sliy) AIOYTRIO]) PE muo ], o 998 (TN [€] wo Areiqr] auruQ Lofyy, “Aysiantug) sopey ) £q 96007 10 TEIG-LIFT [T 1101 {ropurco £oft i Arerqraurpucyy: sy uindy popeopt a0y T10T ‘TESELOFT

¢
E|Qr (?) [ < CoaT " (Tlol” + (TEeZ,)")

< C,9E|s;’o|2"

(45)

and similarly for any y > 1
|
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#lon(y) - ou(s)

< T~ V{E

2y

>

j=k+1

(5475w |
< car {0 0l un 7+ 0 7(EY 6
+ (t-,-k) (TEIE.',0|27 + (TE;,-,?‘O)V}

_ Y
S CZZ (#) Elsi‘()lz?.

Since As(k,f) is a sum of independent random variables, we can use again Rosenthal’s inequality in conjection with the estimates in
(43)-(46) with y = /2 and y = 2 to conclude

0 _ x/4 N
As(k,£) < C23< ) NEEIP.0|

The upper bounds for A,,A; and Az imply that forall 1 < k< ¢<T

AN ¢—k\"** 1 € —k\"*
EIVN,T(?)_VN, ( )|/2<C3< 7 ) +C24WSC25( 7 ) )

which yields
E|Vnr(x) — Ve ()% < Gas | x —y | ¥/*
for all 0 < x,y < 1. Since k > 4, Lemma 2 follows from Theorem 12.3 of Billingsley (1968, p. 95). O
Proor oF THeorem 1. The result follows immediately from Lemmas 1 and 2. O

6. PROOF OF THEOREM 3

Let

[ (T —to)| Tx)8;/T, if 0< [Tx] <t
vri(x) = { —to(T ” |Tx])3i/T, if to < |Tx] < T

It is easy to see that

|1x]
24, =1T{Z iy By }

t=1
2 L
+3 > e Ze,, V() + & 7V7(%).
t—1
It follows from Theorem 1 that
[Tx]

1 11 T T T
3 Y

Following the proofs in Section 5, one can show that

vri(x L | x| o TN 1/2
N'/ergzaz{z i,r—TlZ]e,-', =0p szlz -

0< <l

Since
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|

,(3) > e

with some positive ¢, Theorem 3 is proven.

7. PROOF OF THEOREM 4

To derive Theorem 4 from Theorem 1, we need to replace ? with 62(i). The next provides some results for the kernel estimator of ¢2.

Lemma 3. If (4)-(12) and (19)-(23) hold, then we have

[E33) — 73()| < & e,
A s ~2/n\2 h 4
E(67(i) — o7())” < CZTE‘:i,o’

h 2
@0 - A0)* <G (7) Edo

adyn =2 s h
|E[(67() — a7(1))ZF ,(x)]| < Caffﬂ?,o
and
2 1
63(9) - oF| < Cs - Esf,

where © = min(v,x — 1), G,...,Cs are constants and
L
G2(i) = el +2 ) K(;)Eeroers.
s=1
Proor. We can assume without loss of generality that x; = 0. Elementary arguments give that with some constant ¢,

1 2
< G ?Eﬂ‘v,o.

1< o 1<
E?Z(x,,, — Xr(i))? — E?fo,
t=1 t=1

It is easy to see that

s T
3rali) — Trali) = 7 {—(r FOR) +Xe) D K + X)) D x}

t=1 j=T—s+1

where
1 T—s
Vs (= T_s Z XitXit4s-
=
Hence, similarly to (52), we have

. . 1
Eir (i) — E7ra()] < Cag £y,

Now, (47) follows from (52)-(54).
Assumptions (4)-(6) and (8) yield that

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

J. Time Ser. Anal. 2012, 33 631-648 © 2012 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa

o £ q pantanc® ar: {1 Y o8m Jo 8] T.10) A1 ] SUTIQ) B[y, U (AIONTPUICO-PUE-RILIO} 00 o[ty ATe qouruoy: ady) aroyrpuoy) pue s, o 908 {SENZIED! €] w0 Amiqr] aupug Aofyy, ‘Ajtstontup) sopre) £q X 06L00°T 10C TESE-LOVT [T 1101 {roppuico oft e Aresquiaurpuoyy: sy uroxy popeorn(]  TI0T ‘TESGLOYT




Journal of

Time Series Analysis L. HORVATH AND M. HUSKOVA

T 2
( > (X — Xr(i))? ;Zx,) —EX“()<C3T Ec}y (55)

=1

with some constant cs.
Using (59) we obtain

{ K( )(/r,s i) = rs(i ))} < 8(Ary +Ara +Ar3),

=1

m

where
-1 2
- s T
Ara =E{X2(D)Y K(=)=—1%
{ro5x()7
T-1 s 2
_ s 1
At =E Xr(i) K(-)=—— Xit
EOWIRISS
and

L PR T 2
Arz = EL X K(—)—=—— X; .
o-eroSx@)r > n

t=T—s+

2
Ari<a (?) Esly,
where ¢, is a constant. Similar arguments give that

2 2
Ars < h Eet d Ar; < h Ee}
725G T &po an T3 = Ce T €0

with some ¢s and ¢s. Applying (4)-(6) and (8) one can easily verify that

It follows from (20) and (55) that

Using again the linear structure of the X;,'s, we can write that

T-1 2
E{ K(%) (7rs(i) — Em(i))}

T-1T7T-1
=33 K(%)K(%) Elprs(i)7r(i) — Evr 5()Epr (i)
T-1T7-1

=1 t=1 u=1 v=1
L i S ANISTt 1 @ o o @
- K@qa LY Bunwrpa),
where
Ai(u,v,s,t) = E[X;uXiussXivXive] — E[XiuXiuss)EXivXivie]
and
Buyi(w,r,p,q) = E[Ciwtu—wCiréus—rCipEv—pCigtvit—q) — E[CiwEu—wirurs—r]E[(Ciptv—pCiguit—q)]-

It is easy to see that E(CiweuwCiréurs—r)E(Cipev—pCigévit—q) = O except if r = w + s and g = t + p. Now, we consider the four
cases when B, ; is different from 0. Case 1: Let G;(u,v) be the set of those w,r,p,q forwhichu —w=u+s—r=v—-—p=v+t—gq.
We note that on the set G; we have thatv =u +p — w,r = w + 5,g = p + t, so using (8) we obtain that
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ToT
EZZ |Buyi(w,1,p,q)| < cgTs *F't 1 Egf,.
G

u=1v=1 G

Since « > 2 and K is bounded, we obtain that

ii'(() ()ggr_” ZBuv.wrp,q) <c9TE;

s=1 t=1

Case 2: Let G, be the set on which u —w=u+s—r#v—p=v+t— q. By the independence of the ¢;/s, we have that
B,y = 0 on G, and therefore

L e B £\ ISt 1
K(—)K — = Byyii ELEY 4 =
s=1 t=1 h (h)u—ivz—;r_sr_t%: wi(:1P,0) =0

Case 3: Let G3 be the set on whichu —w=v —-—p#u+s—r=v+t— q. On this set we have that p = w + (v — u) and
qg=r+(v—u)+ (t — s). Hence, using again (8) we conclude

QS i e

s=1 t=1 u=1 v=1 Gs
1o T-1T-1 s t T—s Tt oo oo
<0 K(B)K(E) SIS w1 ) (1 4 [ s
s=1 t=1 u=1 v=1 w=1 r=1
< cn=(Eefo)’

Case 4: Let G, be the set on whichu —w=v+t—q#v—p=u+s —r. On this set, we have that p = w + (v — u) and
q=r+ (v—u)+ (t — s). Following the proof of Case 3, one can easily verify that

T-1T-1 s t T—s T—-t 1 1 h .
: v < 20).
(a0 (5) S o e X a9 < e (6

s=1 t=1 =1 v=1

This also completes the proof of (48).

The proofs of (49) and (50) are very similar to that of (48), but there are more non-zero term, but the basic idea is the same and
therefore the proofs of (49) and (50) are omitted.

We can assume that a = 1 in (20). It follows from (20) and (8) that

00 h
Z . —atlp, 2 E: N —atlp 2

IE&i,OSi,sl < C]3h * ESi,O and |E¥.,"0f.;'5| < C]4h * E}‘i,O’
s=h s=ch

where 0 < ¢ < 1 is small enough but fixed. Since & > 1, the Taylor expansion and (21) imply that

ch

ch v
Z K(%) — K(0)|E£,',of:irs < Cis Z (%) sf"E.q‘vz'o < C16%E£zo,
s=1 s=1

completing the proof of (51). O

Proor oF THEOREM 4.  According to Theorem 1, we need to show only

Sup, Var(x) — Vi (x)] = 0p(1). (56)
Let Dy denote the event that 62(i) > o?/2 for all 1 < i < N. By the independence of the panels and (49) we conclude that
N o?
P{Dnr} = HP{%(") =51

N
> 110 - Pl0) - 71> %)
i=1

N 4 2
2 h
> .|7,|| {1 — (0—’2) C3 (?) E 8?0}

— 1,

on account of assumptions (7) and (23). Hence, it is enough to establish (56) on Dyr.

J. Time Ser. Anal. 2012, 33 631-648 © 2012 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa

o £ q pantanc® ar: {1 Y o8m Jo 8] T.10) A1 ] SUTIQ) B[y, U (AIONTPUICO-PUE-RILIO} 00 o[ty ATe qouruoy: ady) aroyrpuoy) pue s, o 908 {SENZIED! €] w0 Amiqr] aupug Aofyy, ‘Ajtstontup) sopre) £q X 06L00°T 10C TESE-LOVT [T 1101 {roppuico oft e Aresquiaurpuoyy: sy uroxy popeorn(]  TI0T ‘TESGLOYT




Journal of

Time Series Analysis L. HORVATH AND M. HUSKOVA

Next, we write

Vur(3) — Var () = N%Z(#—é) (22,0 - a2x(1 — )]

Also,
N 62 — 62 N E82(i) — & N 62 —E5
‘Z_]: 5%(,;(’):'2_]: T(:})T(,') r(’)+; ‘T(i)T(I)
CRE () — 30) | N (EaR(0) — 630))° | oo — EdE(i)
B D D D 0T B SR-10}

ET: 1 &L (Ea2(i) — 62(i))?
(Nmz ( ):NZ( ()6? )

and similarly

G G 52(i) — 62(i))?
N1/2EZ(E T(*'z(, r(’)) 1{Dx.r} _2N;|/2 > IE(E T(’)U;1 ()

N'2h1 &L,
<G T N;Si‘oﬁo.

Using (47) and (48) we conclude

o~ |of — Ed3(i)]
= Nl/z — *2(,)

SC2NI/2{T hr} Z“:o

completing the proof of
1 ao? — (i
WZTJ(I)X“ —x) = op(1). (57)

Following the proof of Lemma 2, one can verify that

. Z = 2(,(') [22,(6) — o?x(1 —x)] s tight in [0, 1,

so we need to prove only that

1 07— a700) 1 -7 — a7(0)
N1/2 ; O_'_2AT(T,-) Z%,i(x) N]/zz' 0’%('; X(1 —X) = OP(1) (58)

for all 0 < x < 1. On account of (57), we need to consider the first term in (58). We use the decomposition

Zaam W—Zéam >+ZW ﬁ”,m

222 T,i
i=1 (’) i=1 '

N N
=300 20+ 3 O 2
i i i=1 Tj

It follows from (50) and (23) that
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1 G2 (i
WZ 0710 72, < c sz__zp,o 0.
i=1 i
By the independence of the panels, we have that
2
a7(i) — a3 (i)
2 T ) 52
(NZ[ Z (X )—ETZT,;(X)]
i) —62(i)
i (74,( ).
Assumptions (6) and (8) yield that EZ}; < c4Ec, the Cauchy-Schwarz inequality with (49) implies that
i 1 28 a2ys
var( 050 22,0)) < LE@0) - 072,00}
1
< 5 (E@70) — 67())") (€27
< Cs gE}ﬁO
Thus, we have
a2 (i) — 62(i)
szz . pr ZT,:'(X) =0p(1)
for all 0 < x < 1. Similarly,
s L O 2 0 Our) < s (B~ FON (€2 )
N1/ Ti NTT S C6 c g; — 0t T,
h1 &
2
< C7Nl/ ?N‘Z]:ngo — 0.
We already showed that EZ%;(X) < cgEejg, so (51) and (7) yield
1 ‘72(’) 2 1 o7 —370)|
WE Z] (I’ ZT:( ) N|/2 2]: :1 EZT‘i(X)
N'I/Z
S Co ht ’
completing the proof of (58). O

8. PROOFS OF (28)-(30)

Using (25) we can write

Wnr(x) =

=
~| =

[ITXIe’t_LTxJZ ]2 [TxJ(Tlexj)

BRR
lEAE Pl

| Tx| T 2 N
{Z [XJZQ} NLZ%

\H

It follows from (27) that

[Tx] T
T1/2 {Z & — I.?—(J Z Ge } D[i‘l’l B(x), (59)
t—

where B(x) is a Brownian bridge. Following the proofs in Section 5, one can show that
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[17x]

1 a1 ITx| |
sup N2 2712 E it — Z it = 0p(1) (60)

0<x<1 iz %i =

and therefore Theorem 1 implies (28). If maxi<j<y ¢;y — 0, then in this case (60) can be replaced with
7]

1 g 1 x| <= |
sup —Z%m Zei,:—l'—TJ eic|| =op(1). (61)
1

1/2
o<x<1 [NV 4 = =

Hence, (29) follows from Theorem 1 and (59). To prove (30), we note that

N I
#;{ﬁzi(x) _M}

1 N [ | Tx| <& ? |Tx|(T—|Tx])| o2
= a2 ??[Zef"‘T;e“ TR (ara

L] L L] Tx)
N‘/Z {E 2+ ¢? T2 [‘Z]: ""_LTJ'ZI: "]}T‘/z {ZCr lTJ,Z,:Cl}

[ Tx]

LT T N
Zc. Zc] e N1/2262+¢2

1 1

Repeating the arguments leading to (29), one can establish (30).
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